adaptive
 curriculum teas

ac / TEKS Alignment

Dynamic, Interactive Learning

ac / TEKS Alignment

Table of Contents

Middle School Grade 6

Texas Knowledge and Skills... 1-5

Middle School Grade 7
Texas Knowledge and Skills7-11
Middle School Grade 8Texas Knowledge and Skills15-19
High School Algebra I
Texas Knowledge and Skills. 21-27
High School Algebra II
Texas Knowledge and Skills 29-36

STAAR Readiness and Supporting Standards

Readiness Standards

These standards are considered essential for success in the current grade or course. They support college and career readiness as well as address broad, deep ideas with in-depth instruction.

Supporting Standards

These standards play a role in preparing students for the next grade though not a central role. They address more narrowly defined ideas and may be emphasized in a subsequent or previous year.

AC Math Activity Objects consist of five different types:

1. Concept Development

These activities introduce concepts through engaging, real-world scenarios and develop these concepts using an inquiry-based approach.

2. Interactive Exercise

These activities provide learners with additional opportunities to develop conceptual understanding.

3. Skills Application

These activities help learners apply and extend their knowledge and practice essential mathematical skills.

4. Problem Solving

These activities engage learners with a guided problem-solving process to apply and enhance their mathematical understanding.

5. Visual Proofs

These activities provide learners with visual justification of formulas, theorems and relationships.

ac /TEKS Math Alignment

Middle School Grade 6 - Introduction

The desire to achieve education excellence is the driving force behind the Texas Essential Knowledge and Skills for mathematics, guided by the College and Career Readiness Standards. By embedding statistics, probability, finance, and focusing on fluency and deep understandings, Texas will lead the way in mathematics education and prepare all Texas students for the challenges they will face in the 21st century.

The process standards are integrated at every grade level. When possible, students will apply mathematics to problems arising in everyday life, society and the workplace. Students will use a problem solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, evaluating the problem-solving problem process and reasonableness of the solution. They will select appropriate tools such as real objects, manipulatives, paper and pencil, and technology and techniques such as mental math, estimation, formulas, theorems, and number sense to solve problems efficiently. Effective communication of mathematical ideas, reasoning, and their implications using multiple representations, such as symbols, diagrams, graphs and language will be emphasized. They will use mathematical relationships to generate solutions and make connections and predictions. Students will analyze mathematical relationships to connect and communicate mathematical ideas. They will
explain, display, or justify mathematical ideas and arguments using precise mathematical language in written or oral communications.

The primary focal points at Grade 6 are number operations; proportionality; expressions, equations and relationships; and measurement and data. Students use concepts, algorithms, and properties of rational numbers to explore mathematical relationships and to describe increasingly complex situations. Students use concepts of proportionality to explore, develop, and communicate mathematical relationships. Students use algebraic thinking to describe how a change in one quantity in a relationship results in a change in the other; and they connect verbal, numeric, graphic, and symbolic representations of relationships including equations and inequalities. Students use geometric properties and relationships, as well as spatial reasoning, to model and analyze situations and solve problems. Students communicate information about geometric figures or situations by quantifying attributes, generalize procedures from measurement experiences, and use the procedures to solve problems. Students use appropriate statistics, representations of data, and reasoning to draw conclusions, evaluate arguments, and make recommendations. While the use of all types of technology is important, the emphasis on algebra readiness skills necessitates the implementation of graphing technology.

MIDDLE SCHOOL GRADE 6

Texas Knowledge and Skills (TEKS)

MIDDLE SCHOOL GRADE 6

Texas Knowledge and Skills (TEKS)

MIDDLE SCHOOL GRADE 6

Texas Knowledge and Skills (TEKS)

State

$6 . A$	Geometry and spatial reasoning. The student uses geometric vocabulary to describe angles, polygons, and circles. The student is expected to	Use angle measurements to classify angles as acute, obtuse, or right	Angles and Types of Angles		∇
$6 . B$	Geometry and spatial reasoning. The student uses geometric vocabulary to describe angles, polygons, and circles. The student is expected to	Identify relationships involving angles in triangles and quadrilaterals	Interior and Exterior Angles of a Triangle		∇
			Sum of the Exterior Angles of Polygons		∇
			Interior Angles of the Polygons		∇
$6 . C$	Geometry and spatial reasoning. The student uses geometric vocabulary to describe angles, polygons, and circles. The student is expected to	Describe the relationship between radius, diameter, and circumference of a circle	Ratio of a Circle's Circumference to Its Diameter	\bullet	
			Calculating the Circumference of a Circle	\bullet	
8.A	Measurement. The student solves application problems involving estimation and measurement of length, area, time, temperature, volume, weight, and angles. The student is expected to	Estimate measurements (including circumference) and evaluate reasonableness of results	Conversion of the Area Measures		∇
$8 . B$	Measurement. The student solves application problems involving estimation and measurement of length, area, time, temperature, volume, weight, and angles. The student is expected to	Select and use appropriate units, tools, or formulas to measure and to solve problems involving length (including perimeter), area, time, temperature, volume, and weight	Conversion of Length Measures	-	
			Conversion of the Area Measures	-	
			Conversion of Volume Measures	-	
			Measuring Time	-	
			Area of Composite Shapes	-	
			Area of a Parallelogram	-	
			Area of Trapezoids	-	
			Problem Solving Involving Volumes of Prisms	-	
8.C	Measurement. The student solves application problems involving estimation and measurement of length, area, time, temperature, volume, weight, and angles. The student is expected to	Measure angles	Angles and Types of Angles		∇
8.D	Measurement. The student solves application problems involving estimation and measurement of length, area, time, temperature, volume, weight, and angles. The student is expected to	Convert measures within the same measurement system (customary and metric) based on relationships between units	Conversion of Length Measures		∇
			Conversion of the Area Measures		∇
			Conversion of Volume Measures		∇
			Measuring Time		∇

MIDDLE SCHOOL GRADE 6

Texas Knowledge and Skills (TEKS)

State

State ID	TEKS	Student Expectation	Activity Object		
9.A	Probability and statistics. The student uses experimental and theoretical probability to make predictions. The student is expected to	Construct sample spaces using lists and tree diagrams	Fundamental Counting Principle		∇
			The Concept of Probability		∇
			Probability Using Tree Diagrams		
$9 . B$	Probability and statistics. The student uses experimental and theoretical probability to make predictions. The student is expected to	Find the probabilities of a simple event and its complement and describe the relationship between the two	The Concept of Probability		∇
10.A	Probability and statistics. The student uses statistical representations to analyze data. The student is expected to	Select and use an appropriate representation for presenting and displaying different graphical representations of the same data including line plot, line graph, bar graph, and stem and leaf plot	Find the Appropriate Graph		V
			Line Plot		∇
			Interpreting Bar Graphs		∇
			Bar Graphs and Line Graphs		∇
			Stem and Leaf Plot		∇
$10 . \mathrm{B}$	Probability and statistics. The student uses statistical representations to analyze data. The student is expected to	Identify mean (using concrete objects and pictorial models), median, mode, and range of a set of data	Mean, Median and Mode		∇
			Calculate Mean, Median, Mode		
10.C	Probability and statistics. The student uses statistical representations to analyze data. The student is expected to	Sketch circle graphs to display data;	Circle Graphs		∇
10.D	Probability and statistics. The student uses statistical representations to analyze data. The student is expected to	Solve problems by collecting, organizing, displaying, and interpreting data	Line Plot	\bullet	
			Pictograph	\bullet	
			Circle Graphs	\bullet	
			Bar Graphs and Line Graphs	\bullet	
			Drawing Bar Graphs	\bullet	
			Double Bar Graphs	\bullet	
			Interpreting Bar Graphs	\bullet	

ac / TEKS Math Alignment

Middle School Grade 7 - Introduction

The desire to achieve education excellence is the driving force behind the Texas Essential Knowledge and Skills for mathematics, guided by the College and Career Readiness Standards. By embedding statistics, probability, finance, and focusing on fluency and deep understandings, Texas will lead the way in mathematics education and prepare all Texas students for the challenges they will face in the 21st century.

The process standards are integrated at every grade level. When possible, students will apply mathematics to problems arising in everyday life, society and the workplace. Students will use a problem solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, evaluating the problem-solving problem process and reasonableness of the solution. They will select appropriate tools such as real objects, manipulatives, paper and pencil, and technology and techniques such as mental math, estimation, formulas, theorems, and number sense to solve problems efficiently. Effective communication of mathematical ideas, reasoning, and their implications using multiple representations, such as symbols, diagrams, graphs and language will be emphasized. They will use mathematical relationships to generate solutions and make connections and predictions. Students will analyze mathematical relationships to connect and communicate mathematical ideas. They will explain, display, or justify mathematical ideas and
arguments using precise mathematical language in written or oral communications.

The primary focal points at Grade 7 are number operations; proportionality; expressions, equations and relationships; and measurement and data. Students use concepts, algorithms, and properties of rational numbers to explore mathematical relationships and to describe increasingly complex situations. Students use concepts of proportionality to explore, develop, and communicate mathematical relationships including number; geometry and measurement; and statistics and probability. Students use algebraic thinking to describe how a change in one quantity in a relationship results in a change in the other; and they connect verbal, numeric, graphic, and symbolic representations of relationships including equations and inequalities. Students use geometric properties and relationships, as well as spatial reasoning, to model and analyze situations and solve problems. Students communicate information about geometric figures or situations by quantifying attributes, generalize procedures from measurement experiences, and use the procedures to solve problems. Students use appropriate statistics, representations of data, and reasoning to draw conclusions, evaluate arguments, and make recommendations. While the use of all types of technology is important, the emphasis on algebra readiness skills necessitates the implementation of graphing technology.

MIDDLE SCHOOL GRADE 7

Texas Knowledge and Skills (TEKS)

State

Stat ID	TEKS	Student Expectation	Activity Object		$5^{2^{2}}$
1.A	Number, operation, and quantitative reasoning. The student represents and uses numbers in a variety of equivalent forms. The student is expected to	Compare and order integers and positive rational numbers	Compare and Order Proper Fractions		∇
			Compare and Order Decimals with Races		∇
$1 . \mathrm{B}$	Number, operation, and quantitative reasoning. The student represents and uses numbers in a variety of equivalent forms. The student is expected to	Convert between fractions, decimals, whole numbers, and percents mentally, on paper, or with a calculator	Decimal Representations	\bullet	
1.C	Number, operation, and quantitative reasoning. The student represents and uses numbers in a variety of equivalent forms. The student is expected to	Represent squares and square roots using geometric models.	Estimating Square Root of Non-Perfect Squares		∇
2.A	Number, operation, and quantitative reasoning. The student adds, subtracts, multiplies, or divides to solve problems and justify solutions. The student is expected to	Represent multiplication and division situations involving fractions and decimals with concrete models, pictures, words, and numbers	Multiplication of Fractions		∇
			Division of Fractions		∇
2.B	Number, operation, and quantitative reasoning. The student adds, subtracts, multiplies, or divides to solve problems and justify solutions. The student is expected to	Use addition, subtraction, multiplication, and division to solve problems involving fractions and decimals	Adding and Subtracting Fractions and Mixed Numbers	\bullet	
			Multiplication of Fractions	-	
			Division of Fractions	-	
			Solving Problems Using Money	-	
2.C	Number, operation, and quantitative reasoning. The student adds, subtracts, multiplies, or divides to solve problems and justify solutions. The student is expected to	Use models, such as concrete objects, pictorial models, and number lines, to add, subtract, multiply, and divide integers and connect the actions to algorithms	Subtraction of Integers		∇
			Addition of Integers		∇
2.D	Number, operation, and quantitative reasoning. The student adds, subtracts, multiplies, or divides to solve problems and justify solutions. The student is expected to	Use division to find unit rates and ratios in proportional relationships such as speed, density, price, recipes, and student-teacher ratio	Solving Problems Using Proportions		∇
			Problem Solving Involving Ratio and Proportion		∇
2.F	Number, operation, and quantitative reasoning. The student adds, subtracts, multiplies, or divides to solve problems and justify solutions. The student is expected to	Select and use appropriate operations to solve problems and justify the selections	Solving Problems Using Money	-	

MIDDLE SCHOOL GRADE 7

Texas Knowledge and Skills (TEKS)

State

MIDDLE SCHOOL GRADE 7

Texas Knowledge and Skills (TEKS)

MIDDLE SCHOOL GRADE 7

Texas Knowledge and Skills (TEKS)

State

ac /TEKS Math Alignment

Middle School Grade 8 - Introduction

The desire to achieve academic excellence is the driving force behind the Texas Essential Knowledge and Skills for mathematics, guided by the College and Career Readiness Standards. By including statistics, probability, and personal finance, as well as focusing on building fluency and deep understandings of mathematical concepts, Texas will lead the way in mathematics education and prepare all Texas students for the challenges they will face in the 21 st century.

The process standards are integrated at every grade level. When possible, students will apply mathematics to problems arising in everyday life, society and the workplace. Students will use a problem solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, evaluating the problem-solving process and reasonableness of the solution. They will select appropriate tools such as real objects, manipulatives, paper and pencil, and technology and techniques such as mental math, estimation, formulas, theorems, and number sense to solve problems efficiently. Effective communication of mathematical ideas, reasoning, and their implications using multiple representations, such as symbols, diagrams, graphs and language will be emphasized. They will use mathematical relationships to generate solutions and make connections and predictions. Students will analyze mathematical relationships to connect and communicate mathematical ideas. They will
explain, display, or justify mathematical ideas and arguments using precise mathematical language in written or oral communications.

The primary focal points at Grade 8 are proportionality; expressions, equations, relationships and foundations of functions; and measurement and data. Students use concepts, algorithms, and properties of real numbers to explore mathematical relationships and to describe increasingly complex situations. Students use concepts of proportionality to explore, develop, and communicate mathematical relationships. Students use algebraic thinking to describe how a change in one quantity in a relationship results in a change in the other; and they connect verbal, numeric, graphic, and symbolic representations of relationships including equations and inequalities. Students begin to develop an understanding of functional relationships. Students use geometric properties and relationships, as well as spatial reasoning, to model and analyze situations and solve problems. Students communicate information about geometric figures or situations by quantifying attributes, generalize procedures from measurement experiences, and use the procedures to solve problems. Students use appropriate statistics, representations of data, and reasoning to draw conclusions, evaluate arguments, and make recommendations. While the use of all types of technology is important, the emphasis on algebra readiness skills necessitates the implementation of graphing technology.

MIDDLE SCHOOL GRADE 8

Texas Knowledge and Skills (TEKS)

State

MIDDLE SCHOOL GRADE 8

Texas Knowledge and Skills (TEKS)

State

Sta ID	TEKS	Student Expectation	Activity Object	©	$5^{\sum^{2}}$
3.B	Patterns, relationships, and algebraic thinking. The student identifies proportional or non-proportional linear relationships in problem situations and solves problems. The student is expected to	Estimate and find solutions to application problems involving percents and other proportional relationships such as similarity and rates	Use Percent Proportion to Solve Problems	\bullet	
4.A	Patterns, relationships, and algebraic thinking. The student makes connections among various representations of a numerical relationship. The student is expected to	Generate a different representation of data given another representation of data (such as a table, graph, equation, or verbal description).	Different Forms of Representation for a Relationship	-	
5.A	Patterns, relationships, and algebraic	Predict, find, and justify solutions	Graphs of One-Step Linear Equations	\bullet	
	thinking. The student uses graphs, tables, and algebraic representations to make predictions and solve problems. The student is expected to	to application problems using appropriate tables, graphs, and algebraic equations	Graphs of Two-Step Linear Equations	\bullet	
5.B	Patterns, relationships, and algebraic	Find and evaluate an algebraic	Evaluation of Algebraic Expressions		∇
	thinking. The student uses graphs, tables, and algebraic representations to make predictions and solve problems. The student is expected to	expression to determine any term in an arithmetic sequence (with a constant rate of change)	The General Rule for Input/Output Tables		∇
7.A	Geometry and spatial reasoning. The	Draw three-dimensional figures	Drawing 2D Views of a 3D Object		∇
	student uses geometry to model and describe the physical world. The student is expected to	from different perspectives	Completing the Missing 2D View of a 3D Object		∇
7.8	Geometry and spatial reasoning. The student uses geometry to model and describe the physical world. The student is expected to	Use geometric concepts and properties to solve problems in fields such as art and architecture	Using the Pythagorean Theorem to Solve Problems		∇
$7 . C$	Geometry and spatial reasoning. The student uses geometry to model and describe the physical world. The student is expected to	Use pictures or models to demonstrate the Pythagorean Theorem	Proof of the Pythagorean Theorem		∇
8.A	Measurement. The student uses procedures to determine measures	Find lateral and total surface area of prisms, pyramids, and cylinders	Observing Changes in Surface Area of Regular Prisms		∇
	of three-dimensional figures. The student is expected to	using concrete models and nets (two-dimensional models)	Observing Changes in Surface Area of Square Pyramids		∇
			Observing Changes in Surface Area of Cylinders		∇

MIDDLE SCHOOL GRADE 8

Texas Knowledge and Skills (TEKS)

State ID	TEKS	Student Expectation	Activity Object		\%
8.B	Measurement. The student uses procedures to determine measures of three-dimensional figures. The student is expected to	Connect models of prisms, cylinders, pyramids, spheres, and cones to formulas for volume of these objects	Formula for the Volume of a Sphere		∇
			Formula for the Volume of a Cone		∇
8.C	Measurement. The student uses procedures to determine measures of three-dimensional figures. The student is expected to	Estimate measurements and use formulas to solve application problems involving lateral and total surface area and volume.	Problem Solving Involving Volumes of Prisms	\bullet	
9.A	Measurement. The student uses indirect measurement to solve problems. The student is expected to	Use the Pythagorean Theorem to solve real-life problems	Using the Pythagorean Theorem to Solve Problems	\bullet	
$9 . \mathrm{B}$	Measurement. The student uses indirect measurement to solve problems. The student is expected to	Use proportional relationships in similar two-dimensional figures or similar three-dimensional figures to find missing measurements	Let's Find Congruent Triangles	\bullet	
			Let's Find Similar Triangles	\bullet	
10.A	Measurement. The student describes how changes in dimensions affect linear, area, and volume measures. The student is expected to	Describe the resulting effects on perimeter and area when dimensions of a shape are changed proportionally	The Relationship Between Perimeter and Area		∇
$10 . \mathrm{B}$	Measurement. The student describes how changes in dimensions affect linear, area, and volume measures. The student is expected to	Describe the resulting effect on volume when dimensions of a solid are changed proportionally	Observing Changes in Volume of Square Prisms		∇
			Observing Changes in Volume of Cylinders		∇
			Observing Changes in Volume of Quadrilateral Pyramids		∇
11.A	Probability and statistics. The student applies concepts of theoretical and experimental probability to make predictions. The student is expected to	Find the probabilities of dependent and independent events	Find the Given Probability	\bullet	
$11 . \mathrm{B}$	Probability and statistics. The student applies concepts of theoretical and experimental probability to make predictions. The student is expected to	Use theoretical probabilities and experimental results to make predictions and decisions	Experimental and Theoretical Probabilities		∇
			Analyze Experimental Probability Using Graphs		V
11.C	Probability and statistics. The student applies concepts of theoretical and experimental probability to make predictions. The student is expected to	Select and use different models to simulate an event	Find the Given Probability	\bullet	

MIDDLE SCHOOL GRADE 8
 Texas Knowledge and Skills (TEKS)

State
ID
TEKS
Student Expectation
12.C Probability and statistics. The student uses statistical procedures to describe data. The student is expected to

Select and use an appropriate representation for presenting and displaying relationships among collected data, including line plots, line graphs, stem and leaf plots, circle graphs, bar graphs, box and whisker plots, histograms, and Venn diagrams, with and without the use of technology

Activity Object

Find the Appropriate Graph		$\boldsymbol{\nabla}$
Line Plot		$\boldsymbol{\nabla}$
Bar Graphs and Line Graphs		$\boldsymbol{\nabla}$
Stem and Leaf Plot	$\boldsymbol{\nabla}$	
Circle Graphs	$\boldsymbol{\nabla}$	
Double Bar Graphs		$\boldsymbol{\nabla}$
Box and Whisker Plots		$\boldsymbol{\nabla}$
Histogram		$\boldsymbol{\nabla}$

ac / TEKS Math Alignment

High School Algebra I - Introduction

The desire to achieve education excellence is the driving force behind the Texas Essential Knowledge and Skills for mathematics, guided by the Texas College and Career Readiness Standards. By embedding statistics, probability, and financial literacy, while focusing on fluency and deep understandings, Texas will lead the way in mathematics education and prepare all Texas students for the challenges they will face in the 21st century.

The process standards are integrated at every grade level. When possible, students will apply mathematics to problems arising in everyday life, society and the workplace. Students will use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process as well as the reasonableness of the solution. They will select appropriate tools, including real objects, manipulatives, paper and pencil, and technology and techniques, such as mental math, estimation, and number sense to solve problems. Students will effectively communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams,
graphs, and language. They will use mathematical relationships to generate solutions and make connections and predictions. Students will create and use representations to organize, record, and analyze mathematical relationships to connect and communicate mathematical ideas. They will display, explain, or justify mathematical ideas and arguments using precise mathematical language in written and oral communications.

In Algebra I, students will build on grade 6-8 Mathematics Texas Essential Knowledge and Skills (TEKS), which provide a foundation in linear relationships, number and operations, and proportionality. Students will study linear, quadratic, and exponential functions and their related transformations, equations, and associated solutions. Students will connect functions and their associated solutions in both mathematical and real-world situations. Students will use technology to collect and explore data and analyze statistical relationships. In addition, students will study polynomials of degree one and two, radical expressions, sequences, and laws of exponents. Students will generate and solve linear systems with two equations and two variables and will create new functions through transformations.

HIGH SCHOOL ALGEBRA I
 Texas Knowledge and Skills (TEKS)

State

1.A	Foundations for functions. The student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways. The student is expected to	Describe independent and dependent quantities in functional relationships	The Concept of Function		∇
			Domain and range of a function		∇
1.B	Foundations for functions. The student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways. The student is expected to	Gather and record data and use data sets to determine functional relationships between quantities	The Concept of Relation		∇
1.C	Foundations for functions. The student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways. The student is expected to	Describe functional relationships for given problem situations and write equations or inequalities to answer questions arising from the situations	The Concept of Function		∇
1.D	Foundations for functions. The student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways. The student is expected to	Represent relationships among quantities using concrete models, tables, graphs, diagrams, verbal descriptions, equations, and inequalities	Different Forms of Representation for a Relationship	\bullet	
			Directly Varying Quantities and Their Graphs	-	
			The Concept of Relation	\bullet	
1.E	Foundations for functions. The student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways. The student is expected to	Interpret and make decisions, predictions, and critical judgments from functional relationships	The Domain and Range of a Function	\bullet	
2.A	Foundations for functions. The student uses the properties and attributes of functions. The student is expected to	Identify and sketch the general forms of linear $(y=x)$ and quadratic ($\mathrm{y}=\mathrm{x} 2$) parent functions	Introducing the quadratic function and its graph		∇
2.B	Foundations for functions. The student uses the properties and attributes of functions. The student is expected to	Identify mathematical domains and ranges and determine reasonable domain and range values for given situations, both continuous and discrete	Domain and range of a function	-	
			Determining whether a relation is also a function	\bullet	
			The Range of a Quadratic Function	-	
3.8	Foundations for functions. The student understands how algebra can be used to express generalizations and recognizes and uses the power of symbols to represent situations. The student is expected to	Look for patterns and represent generalizations algebraically	Introducing the Quadratic Function and Its Graph		∇

HIGH SCHOOL ALGEBRA I

Texas Knowledge and Skills (TEKS)

State

State ID	TEKS	Student Expectation	Activity Object	$e^{e^{0}}$	s^{5}
4.A	Foundations for functions. The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. The student is expected to	Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations	Characteristics of Polynomials	-	
			Factoring with Difference and Sum Formulas	-	
			Solving One-Step Linear Equations	\bullet	
			Solving Two-Step Linear Equations	-	
4.8	Foundations for functions. The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. The student is expected to	Use the commutative, associative, and distributive properties to simplify algebraic expressions	Factoring with Difference and Sum Formulas		V
5.A	Linear functions. The student understands that linear functions can be represented in different ways and translates among their various representations. The student is expected to	Determine whether or not given situations can be represented by linear functions	The Concept of Linearity		∇
5.C	Linear functions. The student understands that linear functions can be represented in different ways and translates among their various representations. The student is expected to	Use, translate, and make connections among algebraic, tabular, graphical, or verbal descriptions of linear functions	Different Forms of Representation for a Relationship	-	
6.A	Linear functions. The student understands the meaning of the slope and intercepts of the graphs of linear functions and zeros of linear functions and interprets and describes the effects of changes in parameters of linear functions in real-world and mathematical situations. The student is expected to	Develop the concept of slope as rate of change and determine slopes from graphs, tables, and algebraic representations	The Concept of Slope		∇

HIGH SCHOOL ALGEBRA I

Texas Knowledge and Skills (TEKS)

Texas Knowledge and Skills (TEKS)					
State ID	TEKS	Student Expectation	Activity Object		
6.B	Linear functions. The student understands the meaning of the slope and intercepts of the graphs of linear functions and zeros of linear functions and interprets and describes the effects of changes in parameters of linear functions in real-world and mathematical situations. The student is expected to	Interpret the meaning of slope and intercepts in situations using data, symbolic representations, or graphs	Writing Equations in Slope-Intercept Form	-	
			The Concept of Slope	-	
6.C	Linear functions. The student understands the meaning of the slope and intercepts of the graphs of linear functions and zeros of linear functions and interprets and describes the effects of changes in parameters of linear functions in real-world and mathematical situations. The student is expected to	Investigate, describe, and predict the effects of changes in m and b on the graph of $y=m x$ $+\mathrm{b}$	Writing Equations in Slope-Intercept Form	\bullet	
6.D	Linear functions. The student understands the meaning of the slope and intercepts of the graphs of linear functions and zeros of linear functions and interprets and describes the effects of changes in parameters of linear functions in real-world and mathematical situations. The student is expected to	Graph and write equations of lines given characteristics such as two points, a point and a slope, or a slope and y-intercept	Writing Equations in Slope-Intercept Form		V
6.E	Linear functions. The student understands the meaning of the slope and intercepts of the graphs of linear functions and zeros of linear functions and interprets and describes the effects of changes in parameters of linear functions in real-world and mathematical situations. The student is expected to	Determine the intercepts of the graphs of linear functions and zeros of linear functions from graphs, tables, and algebraic representations	Writing Equations in Slope-Intercept Form		∇
6.F	Linear functions. The student understands the meaning of the slope and intercepts of the graphs of linear functions and zeros of linear functions and interprets and describes the effects of changes in parameters of linear functions in real-world and mathematical situations. The student is expected to	Interpret and predict the effects of changing slope and y-intercept in applied situations	The Concept of Slope	\bullet	

HIGH SCHOOL ALGEBRA I

Texas Knowledge and Skills (TEKS)

State

State ID	TEKS	Student Expectation	Activity Object		5
6.G	Linear functions. The student understands the meaning of the slope and intercepts of the graphs of linear functions and zeros of linear functions and interprets and describes the effects of changes in parameters of linear functions in real-world and mathematical situations. The student is expected to	Relate direct variation to linear functions and solve problems involving proportional change	Directly Varying Quantities and Their Graphs		∇
7.B	Linear functions. The student formulates equations and inequalities based on linear functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. The student is expected to	Investigate methods for solving linear equations and inequalities using concrete models, graphs, and the properties of equality, select a method, and solve the equations and inequalities	Solving One-Step Linear Equations	\bullet	
			Solving Two-Step Linear Equations	\bullet	
			Solving One-Step Linear Inequalities	\bullet	
7.C	Linear functions. The student formulates equations and inequalities based on linear functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. The student is expected to	Interpret and determine the reasonableness of solutions to linear equations and inequalities	Solving One-Step Linear Equations		∇
			Solving Two-Step Linear Equations		∇
			Solving One-Step Linear Inequalities		∇
8.A	Linear functions. The student formulates systems of linear equations from problem situations, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. The student is expected to	Analyze situations and formulate systems of linear equations in two unknowns to solve problems	Solving Systems of Linear Equations Using the Elimination Method		∇
			Solving Systems of Linear Equations Graphically		∇
8.3	Linear functions. The student formulates systems of linear equations from problem situations, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. The student is expected to	Solve systems of linear equations using concrete models, graphs, tables, and algebraic methods	Solving Systems of Linear Equations Using the Elimination Method	-	
			Solving Systems of Linear Equations Graphically	\bullet	

HIGH SCHOOL ALGEBRA I

Texas Knowledge and Skills (TEKS)

State

State ID	TEKS	Student Expectation	Activity Object		
8.C	Linear functions. The student formulates systems of linear equations from problem situations, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. The student is expected to	Interpret and determine the reasonableness of solutions to systems of linear equations	Solving Systems of Linear Equations Using the Elimination Method		∇
			Solving Systems of Linear Equations Graphically		∇
9.A	Quadratic and other nonlinear functions. The student understands that the graphs of quadratic functions are affected by the parameters of the function and can interpret and describe the effects of changes in the parameters of quadratic functions. The student is expected to	Determine the domain and range for quadratic functions in given situations	Introducing the Quadratic Function and Its Graph		∇
			The Range of a Quadratic Function		∇
$9 . \mathrm{B}$	Quadratic and other nonlinear functions. The student understands that the graphs of quadratic functions are affected by the parameters of the function and can interpret and describe the effects of changes in the parameters of quadratic functions. The student is expected to	Investigate, describe, and predict the effects of changes in "a" on the graph of $y=a \times 2+c$	Visualizing the Parabola		∇
$9 . C$	Quadratic and other nonlinear functions. The student understands that the graphs of quadratic functions are affected by the parameters of the function and can interpret and describe the effects of changes in the parameters of quadratic functions. The student is expected to	Investigate, describe, and predict the effects of changes in con the graph of $y=a \times 2+c$	Visualizing the Parabola		∇
9.D	Quadratic and other nonlinear functions. The student understands that the graphs of quadratic functions are affected by the parameters of the function and can interpret and describe the effects of changes in the parameters of quadratic functions. The student is expected to	Analyze graphs of quadratic functions and draw conclusions	Visualizing the Parabola	\bullet	
			A Quadratic Function Given in General and Vertex Form	-	

HIGH SCHOOL ALGEBRA I

Texas Knowledge and Skills (TEKS)

State

ac / TEKS Math Alignment

High School Algebra II - Introduction

The desire to achieve educational excellence is the driving force behind the Texas Essential Knowledge and Skills for mathematics guided by the Texas College and Career Readiness Standards. By embedding statistics, probability, finance, and focusing on fluency and deep understandings, Texas will lead the way in mathematics education and prepare all Texas students for the challenges they will face in the 21st century.

The process standards are integrated at every grade level. When possible students will apply mathematics to problems arising in everyday life, society and the workplace. Students will use a problem solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution and evaluating the problem-solving process. They will select tools such as real objects, manipulatives, paper and pencil, and technology or techniques such as mental math, estimation, reasonableness, and number sense to
solve problems. Communication of mathematical ideas, reasoning, and their implications using symbols, diagrams, graphs and language will be emphasized. Students will create and use representations to organize, record, and communicate mathematical ideas. They will explain, display, or justify mathematical ideas and arguments using precise mathematical language in written or oral communications.

In Algebra II students build on the foundations from K-8 and Algebra I. Students broaden their knowledge of quadratic functions, exponential functions and systems of equations. They study logarithmic, square root, cubic, cube root, absolute value, rational functions and their related equations. Students connect functions to their inverses and to their associated equations and solutions in both mathematical and real world situations. In addition, students extend their knowledge of data analysis and numeric and algebraic methods.

HIGH SCHOOL ALGEBRA II

Texas Knowledge and Skills (TEKS)

Stat ID	TEKS	Student Expectation	Activity Object		
1.A	Foundations for functions. The student uses properties and attributes of functions and applies functions to problem situations. The student is expected to	Identify the mathematical domains and ranges of functions and determine reasonable domain and range values for continuous and discrete situations	The Domain and Range of Functions	-	
			Determining Whether a Relation is also a Function	-	
			The Range of a Quadratic Function	-	
2.A	Foundations for functions. The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. The student is expected to	Use tools including factoring and properties of exponents to simplify expressions and to transform and solve equations	Factoring with Difference and Sum Formulas		V
			Exponents and Their Properties		∇
3.A	Foundations for functions. The student formulates systems of equations and inequalities from problem situations, uses a variety of methods to solve them, and analyzes the solutions in terms of the situations. The student is expected to	Analyze situations and formulate systems of equations in two or more unknowns or inequalities in two unknowns to solve problems	Solving Systems of Linear Equations Using the Elimination Method	-	
			Solving Systems of Linear Equations Graphically	-	
			Graphing Systems of Linear Inequalities	-	
3.B	Foundations for functions. The student formulates systems of equations and inequalities from problem situations, uses a variety of methods to solve them, and analyzes the solutions in terms of the situations. The student is expected to	Use algebraic methods, graphs, tables, or matrices, to solve systems of equations or inequalities	Solving Systems of Linear Equations Using the Elimination Method	\bullet	
			Solving Systems of Linear Equations Graphically	\bullet	
			Graphing Systems of Linear Inequalities	-	
3.C	Foundations for functions. The student formulates systems of equations and inequalities from problem situations, uses a variety of methods to solve them, and analyzes the solutions in terms of the situations. The student is expected to	Interpret and determine the reasonableness of solutions to systems of equations or inequalities for given contexts	Solving Systems of Linear Equations Using the Elimination Method	\bullet	
			Solving Systems of Linear Equations Graphically	\bullet	
			Graphing Systems of Linear Inequalities	-	

Adaptive Curriculum's math and science solutions are used by millions of students in the United States, Europe and Asia and are available in multiple languages. Worldwide experts in math, science and online learning theory contribute to the content and design of the interactive activities for both Adaptive Curriculum and its parent company, Sebit Inc.

In the United States, Adaptive Curriculum has partnered with Arizona State University's Technology Based Learning Research Center, which provides pedagogical research, multi-disciplinary expertise and content collaboration. The company headquarters is located in the ASU SkySong Center for Innovation, Technology and Imagination.

For more information, contact us:
www.adaptivecurriculum.com/us/texas
txadoption@adaptivecurriculum.com
888.999.9319 (Toll Free)

HIGH SCHOOL ALGEBRA II

Texas Knowledge and Skills (TEKS)

State

State ID	TEKS	Student Expectation	Activity Object		
4.C	Algebra and geometry. The student connects algebraic and geometric representations of functions. The student is expected to	Describe and analyze the relationship between a function and its inverse.	Fundamental Concepts of the Inverses of Functions		∇
6.A	Quadratic and square root functions. The student understands that quadratic functions can be represented in different ways and translates among their various representations. The student is expected to	Determine the reasonable domain and range values of quadratic functions, as well as interpret and determine the reasonableness of solutions to quadratic equations and inequalities	Introducing the Quadratic Function and Its Graph	\bullet	
			The Range of a Quadratic Function	-	
			Solving Quadratic Equations using Quadratic Formula and Discriminant	-	
			Solving Quadratic Inequalities by Graphing	\bullet	
$6 . B$	Quadratic and square root functions. The student understands that quadratic functions can be represented in different ways and translates among their various representations. The student is expected to	Relate representations of quadratic functions, such as algebraic, tabular, graphical, and verbal descriptions	Introducing the Quadratic Function and Its Graph	\bullet	
			Visualizing the Parabola	-	
			Introducing the Quadratic Equations in One Variable	-	
6.C	Quadratic and square root functions. The student understands that quadratic functions can be represented in different ways and translates among their various representations. The student is expected to	Determine a quadratic function from its roots (real and complex) or a graph	Finding the Equation of a Parabola		∇
7.A	Quadratic and square root functions. The student interprets and describes the effects of changes in the parameters of quadratic functions in applied and mathematical situations. The student is expected to	Use characteristics of the quadratic parent function to sketch the related graphs and connect between the $y=a \times 2+$ $b x+c$ and the $y=a(x-h) 2+$ k symbolic representations of quadratic functions	A Quadratic Function Given in General and Vertex Form	-	
			Graphing a Quadratic Function: Vertex Form	-	
			Graphing a Quadratic Function: Intercept Form	\bullet	
			Graphing a Quadratic Function: General Form	-	
7.B	Quadratic and square root functions. The student interprets and describes the effects of changes in the parameters of quadratic functions in applied and mathematical situations. The student is expected to	Use the parent function to investigate, describe, and predict the effects of changes in a, h, and k on the graphs of $y=a$ $(x-h) 2+k$ form of a function in applied and purely mathematical situations.	Visualizing the Parabola		∇

HIGH SCHOOL ALGEBRA II
 Texas Knowledge and Skills (TEKS)

State

8.A	Quadratic and square root functions. The student formulates equations and inequalities based on quadratic functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. The student is expected to	Analyze situations involving quadratic functions and formulate quadratic equations or inequalities to solve problems	Solving Quadratic Equations by Factoring	-	
			Solving Quadratic Equations by Completing the Square	-	
8.B	Quadratic and square root functions. The student formulates equations and inequalities based on quadratic functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. The student is expected to	Analyze and interpret the solutions of quadratic equations using discriminants and solve quadratic equations using the quadratic formula	Solving Quadratic Equations using Quadratic Formula and Discriminant		∇
8.C	Quadratic and square root functions. The student formulates equations and inequalities based on quadratic functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. The student is expected to	Compare and translate between algebraic and graphical solutions of quadratic equations	Roots and Coefficients of a Quadratic Equation		∇
8.D	Quadratic and square root functions. The student formulates equations and inequalities based on quadratic functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. The student is expected to	Solve quadratic equations and inequalities using graphs, tables, and algebraic methods.	Solving Quadratic Equations by Factoring	\bullet	
			Solving Quadratic Equations by Completing the Square	-	
			Solving Quadratic Equations using Quadratic Formula and Discriminant	\bullet	
			Solving Quadratic Inequalities by Graphing	\bullet	
10.G	Rational functions. The student formulates equations and inequalities based on rational functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. The student is expected to	Use functions to model and make predictions in problem situations involving direct and inverse variation	Directly Varying Quantities and Their Graphs		∇
11.F	Exponential and logarithmic functions. The student formulates equations and inequalities based on exponential and logarithmic functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. The student is expected to	Analyze a situation modeled by an exponential function, formulate an equation or inequality, and solve the problem		\bullet	

